Ngậm volfram (Tungsten inclusions)
Bất kỳ mảnh vụn nào của điện cực volfram rơi vào mối hàn đều sẽ xuất hiện trên phim chụp X-quang, hiển thị dưới dạng màu trắng trên ảnh âm bản do volfram có khối lượng riêng rất cao (Giải thích: vật chất có khối lượng riêng cao có thể cản tốt các tia bức xạ, như Chì --> Do đó, RT film ít bị đen hơn nên vị trí ngậm Volfram(Ti) thấy sáng hơn).
Mặc dù một số thử nghiệm chỉ ra rằng ngay cả với lượng volfram lớn trong mối hàn thép hoặc nhôm bằng TIG cũng không ảnh hưởng nhiều đến cấu trúc mối hàn và chịu lực trạng thái tĩnh,, nhưng ảnh hưởng lớn đến cơ tính và độ dai va đập do ảnh hưởng nhiệt cấp vào cao. Do đó, hầu hết các tiêu chuẩn kiểm tra đều quy định rằng đây là khuyết tật không được chấp nhận.
Do đó, cần áp dụng các biện pháp kỹ thuật để tránh ngậm volfram.
Nguyên nhân chính gây ra ngậm volfram trong mối hàn:
-
Sốc nhiệt (Thermal shock)
Khi dòng điện hàn cao đột biến gây sốc nhiệt tại đầu điện cực volfram, nó có thể dẫn đến đầu nhọn volfram bị nứt vỡ và rơi vào vũng hàn. Nguyên nhân này có thể xuất hiện lúc bắt đầu hồ quang do đánh lửa sai quy cách hoặc nhiệt cấp vào quá cao (có thể tốc độ di chuyển điện cực quá chậm)
👉 Nguồn điện hiện đại thường có tính năng tăng dòng từ từ (current slope-up) để giảm sốc nhiệt — giúp làm nóng volfram từ từ và ổn định hơn. Bạn có thể sử dụng thiết bị đánh lửa HF Spark để hạn chế shock nhiệt, nhưng thiết bị này dùng dòng cao tầng nên có thể ảnh hưởng gây hử hỏng thiết bị điện tử, xem thêm bài phân tích tại HF Spark. -
Ôxy hóa điệc cực do thiếu khí bảo vệ
Khi khí bảo vệ không đủ hoặc không bao phủ tốt, điện cực volfram sẽ bị ôxy hóa nhanh và rã thành từng mảnh nhỏ.
👉 Vì vậy, cần phải thực hiện xả khí trước (pre-flow) đúng cách để làm sạch đường khí và đầu mỏ hàn trước khi khởi động hồ quang hàn.
Nứt nóng (Solidification cracking)
Nứt nóng hay gọi khác là nứt do đông đặc, nứt giữa đường hàn, tức là nứt khi mối hàn còn nóng. Xãy ra từ lúc kim loại hàn còn loãng cho đến khi đã đông đặc.
Một số thành phần vật liệu có xu hướng nhạy cảm với hiện tượng nứt trong quá trình đông đặc.
Đối với thép ferit, thép không gỉ và hợp kim nickel, nguyên nhân thường là do tạp chất như lưu huỳnh (S) và phosphor (P) gây ra.
Dây hàn (filler wire) thường được thiết kế có hàm lượng mangan cao, vì mangan phản ứng với các tạp chất này và tạo thành các hợp chất có nhiệt độ nóng chảy cao hơn, ít có khả năng gây nứt nóng.
Trong thép không gỉ, cần có một tỷ lệ nhỏ (~5%) pha ferit trong nền austenit để tránh nứt nóng, điều này được điều chỉnh thông qua việc lựa chọn thành phần kim loại bổ sung (filler) một cách cẩn thận.
Việc pha loãng với kim loại cơ bản và thành phần hóa học của vật liệu nền cũng cần được xem xét, từ đó chọn que hàn thích hợp để đạt được hàm lượng ferit cần thiết.
Hợp kim nhôm (Aluminium alloys) cũng có thể nhạy cảm với hiện tượng nứt nóng, ngay cả khi không có tạp chất — chỉ cần tỷ lệ nguyên tố hợp kim cao là đủ tạo điều kiện cho nứt.
Vì thế, kim loại bổ sung phải được chọn sao cho hạn chế nứt nóng.
Tuy nhiên, cần cẩn trọng vì sự pha loãng với vật liệu nền có thể đưa thêm nguyên tố không tương thích như Mg cùng với Si, dễ gây nứt.
Nếu thành phần kim loại hàn nhạy cảm với nứt do đông đặc, hiện tượng này thường xảy ra trong hai điều kiện:
Không có đủ kim loại lỏng để lấp đầy các vết nứt bắt đầu hình thành.
-
Ứng suất co rút cao trong quá trình nguội.
🧨 Hai điều kiện trên đặc biệt đúng trong miệng hố (final crater) khi hồ quang bị tắt — hiện tượng nứt này được gọi là nứt miệng nuối lửa (crater cracking), là một dạng phổ biến của nứt do đông đặc.
Khi vùng miệng hàn cuối cùng đông đặc, có thể hình thành vết nứt hình ngôi sao ở tâm miệng hàn.
Các nguồn điện hàn hiện đại có chức năng giảm dòng từ từ (current slope-out) hoặc post-folow, nghĩa là khi thợ hàn tắt dòng, dòng điện giảm dần, làm cho vũng hàn nhỏ dần và nông hơn → kết quả là miệng hàn cuối cùng đủ nhỏ để không bị nứt.
Comments
Post a Comment